Skip to main content
AI in Production 2026 is now open for talk proposals.
Share insights that help teams build, scale, and maintain stronger AI systems.
items
Menu
  • About
    • Overview 
    • Join Us  
    • Community 
    • Contact 
  • Training
    • Overview 
    • Course Catalogue 
    • Public Courses 
  • Posit
    • Overview 
    • License Resale 
    • Managed Services 
    • Health Check 
  • Data Science
    • Overview 
    • Visualisation & Dashboards 
    • Open-source Data Science 
    • Data Science as a Service 
    • Gallery 
  • Engineering
    • Overview 
    • Cloud Solutions 
    • Enterprise Applications 
  • Our Work
    • Blog 
    • Case Studies 
    • R Package Validation 
    • diffify  

Learning Excel as an R user

Author: Rachel Binks

Published: November 24, 2022

tags: r, excel
Sketch of a robot on a computer with the Jumping Rivers logo on it

Recently I came across a situation where I had to use Microsoft Excel for a project. As somebody who has always used R for any statistical analysis, I may not have been entirely enthusiastic about the idea of leaving R behind for the world of Excel. But I figured it would be a good time to dip my toes in. In this blog post I discuss some of the things I found surprisingly difficult when learning Excel as an R user.

Getting used to the lack of resources

One thing I particularly struggled with when using Excel was the difference in availability of free to use resources. In R there are thousands of open source packages available that either already do what you want or can assist you in getting to your goal. However, since Excel is not open source I found that, whilst resources sometimes already existed to do what I wanted to do, those resources were often pay-to-use. I ended up spending more time developing my own method for something that had already been done by somebody else. I’ve been spoiled by the open source nature of R and the availability of community-built packages that do a lot of my work for me.

Whether you want to start from scratch, or improve your skills, Jumping Rivers has a training course for you.

Working with less common probability distributions

Before starting to work with Excel I think I was slightly over-optimistic about its capabilities for statistical analysis. I had hoped that there would be built in functions for working with most statistical distributions. Whilst there are built-in functions for some distributions, the availability of these functions is not very consistent. For example, for the Normal distribution there are built-in Excel functions for the PDF, CDF and inverse CDF. However, for the Negative Binomial distribution Excel only provides a function for the PDF and CDF of the distribution, and not for the inverse CDF. I found this inconsistency annoying as functions that I expected to exist, didn’t.

It is worth saying that there is a free to download resource pack available that does include functions for the inverse CDF of a Negative Binomial distribution, among other useful resources. It was the inconsistent availability of these functions (without the extra resources) that was a little annoying to me. It’s worth noting that base R also only includes functions for some of the most common probability distributions. However, at least R is consistent in which functions are available for the distributions.

Increase in work required

As a consequence of the lack of available free resources, I found that I spent a lot of time and effort developing solutions to problems in Excel. That’s especially annoying when I know that it would only take one line of code in R.

As an example, when fitting a distribution in R, we can use the fitdistr() function from the {MASS} package. Let’s say we have some data that we think may follow a Negative Binomial distribution and we wish to estimate the parameters of the distribution from the data. If x is a vector of our data then we can estimate the parameters of the Negative Binomial distribution as follows:

library(MASS)
fitdistr(x, "negative binomial")

In contrast, in Excel this required an entire spreadsheet of work. The spreadsheet involved implementing maximum likelihood estimation of the distribution’s parameters by building formulae to numerically solve the following equation for r:

$$\left [ \sum_{i=1}^N \psi(x_i + r) \right ] - N\psi(r) + N \ln \left (\frac{r}{r + \sum_{i=1}^N x_i/N} \right ) = 0$$

and then using this to solve the following equation for p:

$$p = \frac{Nr}{Nr + \sum_{i=1}^N x_i} $$

where x1, …, xN are the data points and ψ() is the digamma function.

As I’m sure most people would agree - I’d rather not have to manually set up a spreadsheet to solve this equation (playing with digamma functions is not always fun). Especially when I know there’s a function in R that already does all of this for me behind the scenes.

Nevertheless, for the hundred data points contained in column A, the image below shows a screenshot of how this would work in Excel. On top of the formulae included, this also involved using the Excel Solver add-on to do the numerical estimation of r. Personally, I find this much more complicated than the single line in R!

Screenshot of an Excel spreadsheet which has a number of complicated formulae set up.

Many people use Excel every day without any problems, so many people must find working with it far easier than I did. However, I think I come from a relatively unusual place in having learnt to use R before I had a go at Excel. I was really surprised by how hard some things were to do that were really quick in R. However, I think this is down to having many years of practice with R, and very little practice at Excel. It’s true that for those without programming experience it may take a bit of time to figure out how to get started with R. But once you have picked up the basics it can be really quick to solve a lot of problems, and in my opinion, much easier!


Jumping Rivers Logo

Recent Posts

  • Start 2026 Ahead of the Curve: Boost Your Career with Jumping Rivers Training 
  • Should I Use Figma Design for Dashboard Prototyping? 
  • Announcing AI in Production 2026: A New Conference for AI and ML Practitioners 
  • Elevate Your Skills and Boost Your Career – Free Jumping Rivers Webinar on 20th November! 
  • Get Involved in the Data Science Community at our Free Meetups 
  • Polars and Pandas - Working with the Data-Frame 
  • Highlights from Shiny in Production (2025) 
  • Elevate Your Data Skills with Jumping Rivers Training 
  • Creating a Python Package with Poetry for Beginners Part2 
  • What's new for Python in 2025? 

Top Tags

  • R (236) 
  • Rbloggers (182) 
  • Pybloggers (89) 
  • Python (89) 
  • Shiny (63) 
  • Events (26) 
  • Training (23) 
  • Machine Learning (22) 
  • Conferences (20) 
  • Tidyverse (17) 
  • Statistics (14) 
  • Packages (13) 

Authors

  • Amieroh Abrahams 
  • Aida Gjoka 
  • Shane Halloran 
  • Tim Brock 
  • Russ Hyde 
  • Myles Mitchell 
  • Theo Roe 
  • Colin Gillespie 
  • Gigi Kenneth 
  • Osheen MacOscar 
  • Sebastian Mellor 
  • Keith Newman 
  • Pedro Silva 

Keep Updated

Like data science? R? Python? Stan? Then you’ll love the Jumping Rivers newsletter. The perks of being part of the Jumping Rivers family are:

  • Be the first to know about our latest courses and conferences.
  • Get discounts on the latest courses.
  • Read news on the latest techniques with the Jumping Rivers blog.

We keep your data secure and will never share your details. By subscribing, you agree to our privacy policy.

Follow Us

  • GitHub
  • Bluesky
  • LinkedIn
  • YouTube
  • Eventbrite

Find Us

The Catalyst Newcastle Helix Newcastle, NE4 5TG
Get directions

Contact Us

  • hello@jumpingrivers.com
  • + 44(0) 191 432 4340

Newsletter

Sign up

Events

  • North East Data Scientists Meetup
  • Leeds Data Science Meetup
  • Shiny in Production
British Assessment Bureau, UKAS Certified logo for ISO 9001 - Quality management British Assessment Bureau, UKAS Certified logo for ISO 27001 - Information security management Cyber Essentials Certified Plus badge
  • Privacy Notice
  • |
  • Booking Terms

©2016 - present. Jumping Rivers Ltd